Bone Generation Profiling Around Photofunctionalized Titanium Mesh.

نویسندگان

  • Makoto Hirota
  • Takayuki Ikeda
  • Masako Tabuchi
  • Kaori Nakagawa
  • Wonhee Park
  • Manabu Ishijima
  • Naoki Tsukimura
  • Yoshiyuki Hagiwara
  • Takahiro Ogawa
چکیده

PURPOSE The aim of this study was to evaluate whether photofunctionalization of titanium mesh enhances its osteoconductive capability. MATERIALS AND METHODS The titanium mesh (0.2 mm thickness) used in this study was made of commercially pure grade-2 titanium and had hexagonal apertures (2 mm width). Photofunctionalization was performed by treating titanium mesh with UV light for 12 minutes using a photo device immediately before use. Untreated or photofunctionalized titanium mesh was placed into rat femurs, and bone generation around titanium mesh was profiled using three-dimensional (3D) microcomputed tomography (micro-CT). A set of in vitro experiments was conducted using bone marrow-derived osteoblasts. RESULTS Photofunctionalized titanium mesh surfaces were characterized by the regenerated hydrophilicity and significantly reduced surface carbon. Bone generation profiling at week 3 of healing showed that the hexagonal apertures in photofunctionalized mesh were 95% filled, but they were only 57% filled in untreated mesh, particularly with the center zone remaining as a gap. Bone profiling in slices parallel to the titanium surface showed that photofunctionalized titanium mesh achieved 90% bone occupancy 0 to 400 μm from the surface, compared with only 35% for untreated mesh. Bone occupancy remained as high as 55% 800 to 1,200 μm from photofunctionalized titanium mesh surfaces, compared with less than 20% for untreated mesh. In vitro, photofunctionalized titanium mesh expedited and enhanced attachment and spread of osteoblasts, and increased ALP activity and the rate of mineralization. CONCLUSION This study may provide novel and advanced metrics describing the osteoconductive property of photofunctionalized titanium mesh. Specifically, photofunctionalization not only increased the breadth, but also the 3D range, of osteoconductivity of titanium mesh, enabling space-filling and far-reaching osteoconductivity. Further translational and clinical studies are warranted to establish photofunctionalized titanium mesh as a novel clinical tool for better bone regeneration and augmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium.

BACKGROUND Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light tr...

متن کامل

Preliminary evaluation of a three-dimensional, customized, and preformed titanium mesh in peri-implant alveolar bone regeneration

OBJECTIVES The purpose of this preliminary study is to evaluate the effectiveness of a customized, three-dimensional, preformed titanium mesh as a barrier membrane for peri-implant alveolar bone regeneration. MATERIALS AND METHODS Ten patients were recruited for this study. At the time of implant placement, all patients had fenestration or a dehiscence defect around the implant fixture. A mix...

متن کامل

Photofunctionalized dental implants: a case series in compromised bone.

PURPOSE Ultraviolet (UV) light treatment of titanium, or photofunctionalization, has been shown to enhance its osteoconductivity in animal and in vitro studies, but its clinical performance has yet to be reported. This clinical case series sought to examine the effect of photofunctionalization on implant success, healing time, osseointegration speed, and peri-implant marginal bone level changes...

متن کامل

The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs.

The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalys...

متن کامل

Alveolar Ridge Augmentation with Titanium Mesh. A Retrospective Clinical Study

An adequate amount of bone all around the implant surface is essential in order to obtain long-term success of implant restoration. Several techniques have been described to augment alveolar bone volume in critical clinical situations, including guided bone regeneration, based on the use of barrier membranes to prevent ingrowth of the epithelial and gingival connective tissue cells. To achieve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of oral & maxillofacial implants

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2016